Микроконтроллер m430 f2272 программирование. Вы еще не программируете микроконтроллеры? Тогда мы идем к вам! Программирование микроконтроллеров AVR для начинающих

Я категорически против такого подхода. Обычно это все заканчивается - либо ничем, либо забитые форумы с мольбами помочь. Даже если кому то помогают, то в 90% он больше никогда не всплывет на сайтах по электронике. В остальных 10% он так и продолжает заливать форумы мольбами, его будут сначала пинать, затем поливать грязью. Из этих 10% отсеивается еще 9%. Далее два варианта: либо таки до глупой головы доходит и все же происходит goto к началу, либо в особо запущенных вариантах, его удел копировать чужие конструкции, без единой мысли о том как это работает. Из последних зачастую рождаются ардуинщики.

Путь с нуля на мой взгляд заключается в изучении периферии и особенностей, если это микроконтроллер. Правильнее сначала разобраться с тем как дрыгать ножками, потом с таймерами, затем интерфейсами. И только тогда пытаться поднимать свой FAT. Да это не быстро, да это потребует времени и усилий, но практика показывает, как бы вы не пытались сократить этот путь, все равно всплывут проблемы, которые придется решать и время вы потратите куда больше, не имея этой базы.

Только не нужно путать теплое и мягкое. Первое - из всех правил есть исключения, лично видел людей, которые в руках раньше не держали микроконтроллеров, но за крайне короткий срок смогли обскакать бывалых опытных радиолюбителей, их в расчет не берем. Второе - мне попадались личности, которые начинали с копирования схем и сходу разбирались, но скорее это тоже исключение из правил. Третье - и среди ардуинщиков попадаются опытные программисты, это ведь всего навсего платформа, но и это скорее исключение.

Если говорить об общей массе, то дела обстоят именно так как я описал вначале: нежелание разбираться с основами, в лучшем случае оттягивает момент того, когда придется вернуться к этим вопросам. В худшем случае, вы быстро упретесь в потолок своих знаний и все время винить в своих проблемах кого то другого.

2. Перед решением задачи, дробите ее до абсурда вплоть до «припаять резистор», это помогает, проверено. Мелкие задачи решать куда проще. Когда большая задача разбита на кучу мелких действий, то все что остается - это выполнить их. Могу привести еще один годный совет, хоть он вам и покажется бредовым - заведите блокнотик и пишите в него все что собираетесь сделать. Вы думаете, итак запомню, но нет. Допустим сегодня у меня хорошее настроение и думаю о том, как собрать плату. Запиши план действий: сходить купить резистор, подготовить провода, сделать крепление дисплея. Потом все забудешь, откроешь блокнотик и смотришь - ага сегодня настроение попилить и построгать, сделаю крепление. Или собираешь ты плату и уже осталось допаять последний компонент, но не тут то было резисторы кончились, вот записал бы перед тем как паять, то вспомнил.

3. Не пользуйтесь кодогенераторами, нестандартными фичами и прочими упрощалками, хотя бы на первых этапах. Могу привести свой личный пример. Во времена активного использования AVR я пользовался кодогеном CAVR. Меня он полностью устраивал, хотя все говорили, что он кака. Звоночки звенели постоянно, были проблемы с библиотеками, с синтаксисом, с портированием, но было тяжело от этого отказаться. Я не разбирался как это работает, просто знал где и как поставить галочки.

Кол в мой гроб был вбит с появлением STM32, нужно было обязательно переползать на них, вот тогда то и появились проблемы. Проблемы мягко сказано, фактически мне пришлось осваивать микроконтроллеры и язык Си с нуля. Больше я не повторял прошлых ошибок. Надо сказать это уже пригодилось и не один раз. С тех пор мне довелось поработать с другими платформами и никаких затруднений не испытываю, подход оправдывает себя.

По поводу всех улучшалок и упрощалок, было одно очень хорошее сравнение, что они подобны инвалидным коляскам, которые едут по рельсам, можно ехать и наслаждаться, но вставать нельзя, куда везут - туда и приедешь.

4. Изучайте язык Си. Эх, как же часто я слышу, как начинающие радиолюбители хвалятся, что хорошо знают сишку. Для меня это стало кормом, всегда люблю проконсультироваться у таких собеседников. Обычно сразу выясняется, что язык они совершенно не знают. Могу сказать, что не смотря на кажущуюся простоту, людей которые действительно хорошо бы его знали, встречал не так много. В основном все его знают на столько, на сколько требуется для решения задач.

Однако, проблема на мой взгляд заключается в том, что не зная возможностей, вы сильно ограничиваете себя. С одной стороны не оптимальные решения, которые потребуют более мощного железа, с другой стороны не читаемый код, который сложно поддерживать. На мой взгляд, читаемость и поддерживаемость кода занимает одно из важнейших мест и мне сложно представить, как можно этого добиться не используя все возможности языка Си.

Очень многие начинающие брезгуют изучением языка, поэтому если вы не будете как все, то сразу станете на две ступени выше остальных новичков. Так же не никакой разницы, где изучать язык. На мой взгляд, микроконтроллер для этого не очень подходит. Гораздо проще поставить какую нибудь Visual studio или Qt Creator и порешать задачки в командной строке.

Хорошим подспорьем будет также изучение всяких тестов по языку, которые дают при собеседованиях. Если порыться то можно много нового узнать.

5. Изучение ассемблера? Бояться его не нужно, равно как и боготворить. Не нужно думать, что умея написать программу на ассемблере, вы сразу станете гуру микроконтроллеров, почему то это частое заблуждение. В первую очередь это инструмент. Даже если вы не планируете использовать его, то все равно я бы настоятельно рекомендовал написать хотя бы пару программ. Это сильно упростит понимание работы микроконтроллера и внутреннего устройства программ.

6. Читайте даташит. Многие разработчики, пренебрегают этим. Изучая даташит вы будете на две ступени выше тех разработчиков. Делать это крайне полезно, во первых это первоисточник, какие бы сайты вы не читали, в большинстве случаев они повторяют информацию из даташита, зачастую с ошибками и недосказанностями. Кроме того, там может находиться информация, о которой вы не задумываетесь сейчас, но которая может пригодиться в будущем. Может статься так, что вылезет какая то ошибка и вы вспомните что да, в даташите об этом было сказано. Если ваша цель стать хорошим разработчиком, то этого этапа не избежать, читать даташиты придется, чем раньше вы начнете это делать, тем быстрее пойдет рост.

7. Часто народ просит прислать даташит на русском. Даташит - это то, что должно восприниматься как истина, самая верная информация. Даже там не исключены ошибки. Если к этому добавятся ошибки переводчика, он ведь тоже человек, может даже не нарочно, просто опечататься. Либо у него свое видение, может что-то упустить, на его взгляд не важное, но возможно крайне важное для вас. Особенно смешной становится ситуация, когда нужно найти документацию на не сильно популярные компоненты.

На мой взгляд, намного проще исключить заранее весь слой этих проблем, чем вылавливать их потом. Поэтому я категорически против переводов, единственный верный совет - изучайте английский язык, чтобы читать даташиты и мануалы в оригинале. Понять смысл фразы с помощью программ переводчиков можно, даже если уровень вашего языка полный ноль.

Мною был проведен эксперимент: в наличии был студент, даташит и гугл переводчик. Эксперимент №1: студенту вручен даташит и дано задание самостоятельно найти нужные значения, результат - «да как я смогу», «да я не знаю английский», «я ничего не нашел/я не понял» типичные фразы, говорящие о том, что он даже не пытался. Эксперимент №2: тому же студенту, вручен все тот же даташит и тоже задание, с той разницей, что я сел рядом. Результат - через 5 минут он сам нашел все нужные значения, абсолютно без моего участия, без знания английского.

8. Изобретайте велосипед. Например, изучаете какую то новую штуку, допустим транзистор, дядька Хоровиц со страниц своей книги авторитетно заявляет, что транзистор усиливает, всегда говорите - НЕ ВЕРЮ. Берем в руки транзистор включаем его в схему и убеждаемся что это действительно так. Есть целый пласт проблем и тонкостей, которые не описываются в книгах. Прочувствовать их можно только, когда возьмешь в руки и попробуешь собрать. При этом получаем кучу попутных знаний, узнаем тонкости. Кроме того, любая теория без практики забудется намного быстрее.

На первоначальном этапе, мне очень сильно помог один метод - сначала собираешь схему и смотришь как она работает, а затем пытаешься найти обоснование в книге. То же самое и с программной частью, когда есть готовая программа, то проще разобраться в ней и соотнести куски кода, какой за что отвечает.

Также важно выходить за рамки дозволенного, подать побольше/поменьше напряжение, делать больше/меньше резисторы и следить за изменениями в работе схемы. В мозгу все это остается и оно пригодится в будущем. Да это чревато расходом компонентов, но я считаю это неизбежным. Первое время я сидел и палил все подряд, но теперь перед тем как поставить тот или иной номинал, всегда вспоминаю те веселые времена и последствия того, если поставить неверный номинал.

9. А как бы я сделал это, если бы находился на месте разработчиков? Могу ли я сделать лучше? Каждый раз задавайте себе эти вопросы, это очень хорошо помогает продвигаться в обучении. Например, изучите интерфейсы 1wire, i2c, spi, uart, а потом подумайте чем они отличаются, можно ли было сделать лучше, это поможет осознать почему все именно так, а не иначе. Так же вы будете осознавать, когда и какой лучше применить.

10. Не ограничивайтесь в технологиях. Важно что этот совет имеет очень тонкую грань. Был этап в жизни, когда из каждой подворотни доносилось «надо бы знать ПЛИС», «а вот на ПЛИС то можно сделать». Формально у меня не было целей изучать ПЛИСины, но и пройти мимо было никак нельзя. Этому вопросу было выделено немного времени на ознакомление. Время не прошло зря, у меня был целый ряд вопросов, касаемых внутреннего устройства микроконтроллеров, именно после общения с плисинами я получил ответы на них. Подобных примеров много, все знания, которые я приобретал в том или ином виде, рано или поздно пригодились. У меня нет ни единого бесполезного примера.

Но как было сказано, вопрос технологий имеет тонкую грань. Не нужно хвататься за все подряд. В электронике много направлений. Может вам нравится аналог, может цифра, может вы специалист по источникам питания. Если не понятно, то попробуйте себя везде, но практика показывает, что вначале лучше сконцентрироваться на чем то конкретном. Даже если нужно жать в нескольких направлениях, то лучше делать это ступеньками, сначала продавить что то одно.

11. Если спросить начинающего радиолюбителя, что ему больше нравится программирование или схемотехника, то с вероятностью 99% ответ будет программирование. При этом большую часть времени эти программисты тратят на изготовление плат ЛУТом/фоторезистом. Причины в общем то понятны, но довольно часто это переходит в некий маразм, который состоит в изготовлении плат ради изготовления плат.

В интернетах практически единственный трушный путь к программированию это стать джедаем изготовления печатных плат. Я тоже прошел через этот путь, но каждый раз задаю себе вопрос зачем? С тех пор, как я приобрел себе пару плат, на все случаи жизни, каждый раз думаю о том, что мог бы спокойно прожить все это время без самодельных плат. Мой совет, если есть хоть капля сомнений, то лучше не заморачиваться и взять готовую отладочную плату, а время и средства лучше бы потратить на программирование.

12. Следующий совет, особенно болезненный, мне очень не хочется его обсуждать, но надо. Часто мне пишут, мол ххх руб за ууу дорого, где бы подешевле достать. Вроде бы обычный вопрос, но обычно я сразу напрягаюсь от него, так как зачастую он переходит в бесконечные жалобы на отсутствие денег. У меня всегда возникает вопрос: почему бы не оторвать пятую точку и не пойти работать? Хоть в тот же макдак, хоть на стройку, потерпеть месяц, зато потом можно приобрести парочку плат, которых хватит на ближайший год. Да я знаю, что маленьких городах и селах сложно найти работу, переезжайте в большой город. Работайте на удаленке, в общем нужно крутиться. Просто жаловаться нет смысла, выход из ситуации есть, кто ищет его тот находит.

13. В ту же копилку внесу очень болезненный вопрос инструмента. Инструмент должен позволять вам максимально быстро разрабатывать устройства. Почему то очень многие разработчики не ценят свое время. Типичный пример, дешевая обжимка для клемм, на которой так любят экономить многие работодатели. Проблема в том, что она даже обжимает не правильно, из-за этого провода вываливаются. Приходится производить кучу дополнительных манипуляций, соответственно тратить время. Но как известно дурак платит трижды, поэтому низкая цена кримпера возрастет во много раз, за счет затрачиваемого времени и плохого качества обжима.

Не говорю что дешевое = плохое, нет - все зависит от ситуации. Вернусь к примеру кримпера, было время когда обжимал чем попало, поэтому часто возникали проблемы. Особенно неприятно, когда заводишь плату и она не работает, после долгих поисков ошибки понимаешь что из-за плохо обжатого проводочка, обидно. С тех пор как появилась нормальная обжимка этих проблем нет. Да внутренняя жаба и квакала, и душилась от ее стоимости, но ни разу не пожалел об этом решении. Все что я хочу сказать, что поработав с нормальным инструментом, совершенно не хочется возвращаться к плохому, даже не хочется обсуждать это. Как показывает практика, лучше не экономить на инструментах, если сомневаетесь - возьмите у кого нибудь потестить, почитайте отзывы, обзоры.

14. Заведите сайт, можно писать на нем, что угодно, просто как записки. Практика показывает, что работодатели все равно его не читают, но сам факт производит большой эффект.

15. Тонкий вопрос: профильное высшее образование, нужно ли оно? Мне известны не единичные случаи, когда люди работали абсолютно без образования и по опыту и знаниям они могли дать прикурить любому дипломированному специалисту. Собственно, у меня нет профильного образования, испытываю ли я от этого дискомфорт? В определенной степени да.

Еще в самом начале, когда микроконтроллеры были для меня хобби, я много помогал с курсовыми и дипломами разных вузов, просто чтобы оценить свой уровень. Могу сказать уверенно, что уровень в целом невысок вне зависимости от имени вуза. Учиться несколько лет, для того чтобы написать такой диплом, совершенно необязательно. Достигнуть этого можно самостоятельно за весьма короткий срок. И все же зачастую бывали моменты, когда студенты знали какой то предмет, который они проходили на 2-3 курсе, а я этого не знал. Хоть все эти знания и компенсировались самообразованием, но все же лучше было бы не тратить на это время.

Вуз ради бумажки. Могу сказать, что были и такие ситуации, когда предлагали работу, которая требовала обязательного наличия образования и было обидно, что именно в тот момент бумажки не было. Но в целом, история показывает, что большинству работодателей наплевать на вашу бумажку.

Следующий момент довольно часто не учитывается, это окружение. Не забывайте, что люди, с которыми вы учитесь это ваше поколение, не исключено что вам с ними работать. Количество фирм работающих в одной отрасли сильно ограничено. Практика показывает, что даже в больших городах все и все друг о друге знают, вплоть до интимных подробностей.

Еще один момент это возможности. Зачастую у вузов есть свои возможности - оборудование, может какие то секции, может какие то программы работы за рубежом, этим нужно пользоваться, если есть хоть малейшая возможность. Если в вузе вы не видите перспективы, идите в другой, мир на каком то одном не заканчивается.

Если подытожить то совет таков: если есть хоть малейшая возможность - нужно идти учиться, обязательно по профилю, если есть хоть какие то шансы, то лезть везде, а не отсиживать штаны на задней парте. Заводить знакомства, параллельно дома самому практиковаться, развиваться.

16. Поздно ли начинать программировать в 20, 30, 40, 50 лет? Практика других людей показывает, что возраст вообще не помеха. Многие почему то не учитывают то, что есть целый пласт работы, которую молодые в силу своих амбиций не хотят делать. Поэтому работодатели предпочитают брать тех, кто будет ее тащить. Это ваш шанс зацепиться, а дальше все зависит только от вас.

И последний совет. Многие радиолюбители необщительные, сердитые и раздражительные - считайте это спецификой работы. Излучайте добро и позитив, будьте хорошим человеком.

Здравствуйте девочки и мальчики. Надеюсь вы не забыли свои волшебные палочки, потому что они вам понадобятся. Сегодня я расскажу вам как написать простую утилиту для программирования микроконтроллера и посмотреть как она работает без возни с программаторами, травлением и паянием плат. Программа увеличивает/уменьшает на единицу значение на индикаторе нажатии на кнопку.

Для начала нам потребуется среда разработки. Для программирования микроконтроллеров использую MPLAB IDE версии 7.20 (по моему эта прожка бесплатна). Далее нам потребуется компилятор - HI-TECH C PRO для микроконтроллеров PIC16. Этот зверёк имеет полную ознакомительную версию на некоторое время, а потом сваливается в демо режим. Отличие демо режима от обычного-только в размере получаемых программ(нам на это по барабану, для начала вполне сойдёт и демо версия). И, наконец, необходима среда для моделирования работы нашего устройства. Пусть это будет Proteus 7.4, потому что это единственная известная мне программа, позволяющая моделировать работу микроконтроллера и электрической схемы. У меня лицензионная версия этой программы.

Итак приступим. Для начала создадим проект в MP LAB. Project->New. В диалоговом окне указываем Имя проекта и путь к нему. Путь не должен содержать русских букв и папок с длинными именами (кстати забыл вас предупредить, что при установке MP LAB путь к нему также не должен содержать русских букв, пробелов и не быть слишком длинным).

#include //========= переменные ======== volatile unsigned char counter @ 0x30; // переменная для подсчитывания количества нажатий на кнопку bit Knop_bit_first; // Бит для обработки нажатий на кнопку 1 bit Knop_bit_second; // Бит для обработки нажатий на кнопку 2 //============================= unsigned char NST(unsigned char F) // функция перевода десятичного числа в код для семисегментного индикатора { // на входе десятичное число, на выходе бинарный код для вывода на индикатор switch (F) { case 0: return 0x3f; case 1: return 0x06; case 2: return 0x5b; case 3: return 0x4f; case 4: return 0x66; case 5: return 0x6d; case 6: return 0x7d; case 7: return 0x07; case 8: return 0x7f; case 9: return 0x6f; } } void main(void) // основная часть программы { //==== инициализация микроконтроллера и переменных ======= GIE=0; // запрет всех прерываний, установкой бита GIE в 0 TRISA=0xff; TRISB=0x00; PORTB=0x00; OPTION=0x00; INTCON=0x27; counter=0; Knop_bit_first=0; Knop_bit_second=0; //======================================================= while(1) // организация вечного цикла { if(RA0==0 && counter<9) { if(Knop_bit_first==0) { counter++; Knop_bit_first=1; } } else { Knop_bit_first=0; } if(RA1==0 && counter>0) { if(Knop_bit_second==0) { counter--; Knop_bit_second=1; } } else { Knop_bit_second=0; } PORTB=NST(counter); } }

В идеале это должно работать так - при нажатии на кнопку, число на индикаторе увеличивается на единицу.
В том пике, котрый выбрал я два порта-порт A (8 линий или 8 ножек в микросхеме) и порт B (8 линий). Через любую линию можно как вводить информацию в микроконтроллер так и выводить её. За настройку портов отвечают 2 системных регистра TRISA и TRISB. Запись TRISA=0000010 b означает, что все линии порта A настроены на вывод данных из микроконтроллера кроме первой.
В нашем случае нужно написать TRISA=00000011 b или если не заморачиваться с бинарными кодами TRISA=0xff(все линии порта А на ввод).
Считать информацию с порта или подать на выход можно используя биты RA0..RA3 и RB0..RB7. Это и используется в программе при опросе кнопок, подключённых к RA0 и RA1(кстати при нажатии кнопки, на ножке будет сигнал логического нуля, а при отпускании лог. ед.).
Чтобы скомпилировать нажмите F10. Проверьте в папке проекта должен появится файлик с расширением *.hex. Далее проверим работает ли наша программа. для этого необходимо собрать в протеусе схему нашего устройства.

Щелкните по кнопке P (на рисунке помечена цифрой 1). Это что-то наподобие библиотеки. Элемент можно найти вбиванием в поле keywords его названия. Нам понадобятся: pic16f628a, индикатор 7seg-com-cathode(красного цвета, мы же настоящие ситхи), резисторы chipres10K, кнопки button, батарейки cell и заземление, которое можно найти щёлкнув по кнопке terminals mode(на рисунке помечена цифрой 2) и выбрав из списка ground. Элементы по мере выуживания из библиотеки постепенно накапливаются в списке component mode.
Далее перетаскиваем всё что нам нужно на основное поле и собираем схему. Меняем номиналы сопротивлений и батареек на нужные-правый щелчок мышью по компоненту->Edit properties. Далее загрузим программу в микроконтроллер-правый щелчок мышью по микроконтроллеру->Edit properties->Program file и указываем путь до файлика нашей программы с расширением *.hex(помните он появлялся в паке проекта после компиляции). Запустить/остановить моделирование можно кнопками старт/стоп(спасибо КЭП), они на рисунке обозначены как 3 и 4.

Теперь, когда мы уже ознакомлены с некоторыми возможностями и функциями микроконтроллеров, естественно, возникает логичный вопрос: что нужно для программирования микроконтроллеров? Какие необходимы программы и устройства, где их взять?


Для того чтобы микроконтроллер мог решать задачи и выполнять определенные функции, его нужно запрограммировать, т. е. записать в него программу или же код программы.

Структура и порядок написания программы

Первым делом, прежде чем приступить к написанию любой программы, а точнее кода программы, следует четко представлять, какие функции будет выполнять микроконтроллер. Поэтому сначала нужно определить конечную цель программы. Когда она определена и полностью понятна, тогда составляется алгоритм работы программы. Алгоритм – это последовательность выполнения команд. Применение алгоритмов позволяет более четко структурировать процесс написания кода, а при написании сложных программ часто позволяет сократить время, затрачиваемое на их разработку и отладку.

Следующим этапом после составления алгоритма является непосредственное написание кода программы. Программы для микроконтроллеров пишутся на языке Си или Ассемблере . Только Ассемблер больше относится к набору инструкций, нежели к языку программирования и является языком низкого уровня.


Мы будем писать программы на Си, который относится к языку высокого уровня. Программы на Си пишутся гораздо быстрее по сравнению с аналогичными на Ассемблере. К тому же все сложные программы пишутся преимущественно на Си.

Здесь мы не будем сравнивать преимущества и недостатки написания программ на Ассемблере и Си. Со временем, приобретя некоторый опыт в программировании МК, вы сами для себя сделаете полезные выводы.

Сам код программы можно писать в любом стандартном текстовом редакторе, например в Блокноте. Однако на практике пользуются более удобными редакторами, о которых будет сказано далее.

Компиляция программы

Написанный нами код на Си еще вовсе не понятен микроконтроллеру, поскольку МК понимает команды только в двоичной (или шестнадцатеричной) системе, которая представляет собой набор нулей и единиц. Поэтому Си-шный код нужно преобразовать в нули и единицы. Для этого применяется специальная программа, называемая компилятор , а сам процесс преобразования кода называется компиляция .

Для прошивки МК применяется устройство, называемое программатор . В зависимости от типа программатора вход его подключается к COM или USB порту, а выход к определенным выводам микроконтроллера.


Существует широкий выбор программаторов и отладочных плат, однако нас вполне устроит самый простой программатор , который в Китае стоит не более 3 $.


После того, как микроконтроллер прошит, выполняется отладка и тестирование программы на реальном устройстве или, как еще говорят, на «железе».

Теперь давайте подытожим этапы программирования микроконтроллеров.


При написании простых программ можно обойтись без второго пункта, т. е. без составления алгоритма на бумаге, его достаточно держать в голове.

Следует заметить, что отладку и тестирование программы также выполняют до прошивки МК.

Необходимый набор программ

Существует множество полезных и удобных программ для программирования МК. Они бывают как платные, так и бесплатные. Среди них можно выделить три основных:

1) Atmel Studio

2) CodeVisionAVR

3) WinAVR

Все эти программы относятся к IDE I ntegrated D evelopment E nvironment – интегрированная среда разработки . В них можно писать код, компилировать и отлаживать его.

Следует обратить внимание на Code Vision AVR. Эта IDE позволяет упростить и ускорить написание кода. Однако программа платная.

На начальном этапе программирования все программы лучше прописывать вручную, без каких-либо упрощений. Это поможет быстро приобрести необходимые навыки, а в дальнейшем хорошо понимать и редактировать под свои нужды коды, написанные кем-то другим. Поэтому я рекомендую использовать программу Atmel Studio. Во-первых, она абсолютно бесплатна и постоянно обновляется, а во-вторых она разработана компанией, изготавливающей микроконтроллеры на которых мы будем учиться программировать.

Прошивка и отладка программы

Прошивать микроконтроллеры мы будем с помощью дополнительной программы .

Если микроконтроллера в наличии нет, то его работу можно эмитировать с помощью программы . Она значительно упрощает процесс отладки программы даже при наличии МК, чтобы его часто не перепрошивать, ведь любой МК имеет конечное число перезаписей, хотя это число и достаточно большое.

При прошивке и отладке МК его удобно располагать на макетной плате, но это вовсе не обязательно. Поэтому для большего удобства пригодится и макетная плата. Существует большой выбор макетных плат, однако я вам рекомендую брать ту, которая имеет по возможности большее число отверстий. Когда мы начнем подключать семисегментные индикаторы, вы оцените преимущества «больших» макетных плат.

Еще один важный элемент, который нам пригодится – это техническая документация на МК, называемая datasheet . В общем, нужно скачать datasheet на микроконтроллер ATmega8 .

Программирование микроконтроллеров AVR для начинающих

Микроконтроллер – микросхема, предназначенная для управления электронными устройствами, или по другому – простенький компьютер (микро-ЭВМ), способный выполнять несложные задачи.

Рано или поздно, любой радиолюбитель (я так думаю), приходит к мысли о применении в своих разработках микроконтроллеров. Микроконтроллер позволяет существенно «облегчить» радиолюбительскую конструкцию, сделать ее проще и намного функциональнее.
Что нужно для того, чтобы начать пользоваться всеми возможностями микроконтроллеров?
Я считаю, что не так уж и много. Главное в этом деле — желание. Будет желание, будет и результат.

В этом разделе (и в разделе «Устройство AVR») сайта я постараюсь помочь начинающим «микроконтроллерщикам» сделать первый, он же самый трудный шаг навстречу микроконтроллерам — попробуем разобраться в устройстве и программировании микроконтроллеров AVR семейства ATtiny и ATmega.
В сети существует множество сайтов затрагивающих так или иначе «микроконтроллерную» тематику, много также и различной литературы для начинающих. Поэтому я не собираюсь «переплюнуть» всех и вся и создать очередной шедевр мыслительных мук в виде пособия по микроконтроллерам для начинающих. Я постараюсь систематизировать, собрать в кучу все нужное на мой взгляд, для первого шага в мир микроконтроллеров, и изложить более-менее доступным языком.

В своих статьях я буду опираться на материалы из публикаций популярных авторов микроконтроллерной тематики: Рюмика С.М., Белова А.В., Ревича Ю.В., Евстифеева А.В., Гребнева В.В., Мортона Д., Трамперта В., Фрунзе А.В. и Фрунзе А.А. (и многих других), а также материалы радиолюбительских сайтов. Ну и, может быть, немного своих «умных мыслей».

Программирование микроконтроллеров AVR фирмы Atmel

Эта статья, как и все последующие, - маленький шажок в мир микроконтроллеров. И таких «шажков» у нас будет много, пока не дойдем до того момента, когда сможем сказать: «Микроконтроллер - последний шаг». Но и это, скорее всего, из области фантастики - нельзя объять необъятное, - мир микроконтроллеров постоянно развивается и совершенствуется. Наша задача - сделать первый шаг, логическим итогом которого должна стать первая, самостоятельно разработанная и собранная конструкция на микроконтроллере.

Как вы наверняка знаете, существует много разных систем счисления , одними пользуются и сейчас (наша, родная, десятичная система; римская система, известная нам как «римские цифры»), другие остались в глубоком прошлом (системы счисления инков и майя, древнеегипитская система, вавилонская).
Тут, я думаю, вопросов у нас нет, что такое системы счисления нам понятно - отображение чисел символами. А вот какая связь систем счисления с микроконтроллерами.

Все современные цифровые технологии основываются на логических операциях, без них никуда не деться. Все цифровые микросхемы в своей работе используют логические схемы (выполняют логические операции, в том числе и микроконтроллер).
Создавая программу, мы прописываем все действия микроконтроллера основываясь на своей логике с применением логических операций, иногда даже и не подозревая об этом, которые применяем к логическим выражениям.


В прошлой статье была рассмотрена тема логических операций и выражений. В этой статье мы рассмотрим логические битовые операции. Битовые операции очень близки к логическим операциям, можно даже сказать, что это одно и тоже. Разница только в том,что логические операции применяются к высказываниям, а битовые операции, с такими же правилами и результатами применяются к битам.

Прямой, обратный и дополнительный коды двоичного числа - способы представления двоичных чисел с фиксированной запятой в компьютерной (микроконтроллерной) арифметике, предназначенные для записи отрицательных и неотрицательных чисел

Сегодня мы рассмотрим как, без особых затрат и быстро, запрограммировать любой микроконтроллер AVR поддерживающий режим последовательного программирования (интерфейс ISP) через USB-порт компьютера. В качестве программатора мы будем использовать очень простой и популярный программатор USBASP, а в качестве программы - AVRdude_Prog V3.3, которая предназначена для программирования МК AVR.

Популярнейшая программа AVRDUDE_PROG 3.3 предназначена для программирования микроконтроллеров AVR ATmega и ATtiny

С этой статьи мы начнем конкретно заниматься одним вопросом - программирование микроконтроллеров . Процесс будет проходить следующим образом - сначала статья по устройству микроконтроллера (к примеру, первая статья будет по портам ввода-вывода), а затем статья по программированию. Сегодняшний наш разговор вводный, и будет посвящен вопросам материального и программного обеспечения процесса изучения основ программирования микроконтроллеров.

В этой статье мы поговорим о проблемах русификации программы Atmel Studio, как перевести программу на русский (или другой) язык, и как сделать более удобной работу программы с программатором USBASP. После установки программы Atmel Studio весь интерфейс будет на английском языке. Кому-то, кто знаком с английским, или уже привык работать с программами с английским интерфейсом, это вполне устроит. Меня лично, такой подход создателей программы к великому и могучему не устраивает, мне более комфортно работать с русскими меню.


В этой статье будут рассмотрены основные сведение о языке С, структура программы на языке С, дано понятие о функциях, операторах и комментариях данного языка программирования.


Эту статью (а точнее цикл статей…) я решил полностью посвятить микроконтроллерам фирмы Atmel. Конечно, тема эта избитая… НО! На собственном опыте знаю, что познать истину среди этого, извините, БАРДАКА, очень и очень сложно! Поэтому решил попытаться внести хотя бы какую-нибудь ясность в головы жаждущих познать этого страшного зверя, зовущегося «Микроконтроллер».

Итак, цель этой статьи в том, чтобы описать и по возможности показать весь процесс создания устройства на основе микроконтроллера с «нуля». То есть, от задумки (например, решили мы собрать новогоднюю мигалку, подобную описанной уважаемым alx32 в статье …) до воплощения в железе. Разумеется, минуя все промежуточные стадии: постановка задачи, выбор МК, подбор обвязки, формулировка алгоритма, написание программы, отладка, создание платы и, самое долгожданное – запуск!!!

Обновлено: добавлены файлы. Итак, задача : нам нужно создать устройство, способное зажигать в определенном порядке (пусть будет по очереди) , N-ное количество светодиодов (пускай будет 8 штук).
(это для начала……..)


Теперь можно браться за программирование. Писать можно на чем угодно, но начинающим советую отдать предпочтение языку C , т.к. программировать проще и нагляднее. Лично я пользуюсь компилятором CodeVision AVR (он есть в файловом архиве), дальнейшие листинги программ будут приводиться именно для этого компилятора.

Определимся с алгоритмом . Нам нужно по очереди через определенный промежуток времени активировать один из выходов МК.

Включать/выключать можно разными способами :
- присваивать значения каждому выводу отдельно;
- записывать значения сразу всех выводов.

Значения (последовательность) можно получить :
- набрав все команды вручную;
- из массива;
- математическим методом.

Временной интервал можно задать :
- функциями delay (задержка);
- через таймер.

Поэкспериментируем со всеми этими способами. Но сначала нужна заготовка…

Чтобы создать заготовку программы воспользуемся генератором кода, встроенным в CVAVR . Для этого запускаем программу, нажимаем File -> New , в открывшемся окне выбираем “Project” и жмем OK . На вопрос «Воспользоваться генератором кода?» отвечаем “Yes”.
Появилось окно генератора кода. В нем выбираем тип МК и его тактовую частоту, остальное оставляем как есть:


Далее переходим на вкладку “Ports” и там в “PortB” и выставляем следующее:


Так мы определили все выводы порта B как выходы, а нолики означают, что при включении питания на них будет устанавливаться логический "0 ".
Остальные функции нам пока не нужны.

Жмем “File -> Generate, Save and Exit” , выбираем куда сохранить файлы проекта и видим окно с созданным генератором кодом.

Теперь давайте введем в программу наш код .
Простейший вариант реализации (хотя и самы не красивый с точки зрения программирования) – записываем значения каждого вывода, а задержки делаем через функцию delay .

delay_ms(x ); - задержка на x миллисекунд

delay_us(x ); - задержка на x микросекунд

PORTB - порт, с которым мы работаем.

PORTB.x - обращение к выводу x порта B

Находим в конце текста такие строки


Это бесконечный цикл (т.е.выполняется всё время, пока включено питание) нашей программы. Всё, что перед ним – команды предварительной настройки микроконтроллера. Строки, начинающиеся с “//” – комментарии, их тоже полезно иногда читать.

Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только


Жмем кнопочку Make the project

(в панели инструментов).

Матерится?
И правильно! Компилятор не знает функции delay_ms() , поэтому надо указать ему файл, в котором эта функция описана.
Для этого в самом начале текста программы нужно вставить строку #include (тут точка_с_запятой не нужна! )
Примерно вот так:

Снова жмем волшебную кнопочку.
Проект создан .
Теперь в папке, в которую мы сохранили сам проект, появился файл название_проекта .hex – это и есть прошивка микроконтроллера!

Но подождите, не торопитесь хвататься за паяльник… Мы ведь учимся программировать, а не паять!

Именно поэтому предлагаю проверить нашу программу в виртуальном режиме, а именно – в таком замечательном и любимом мною продукте от Labcenter Electronics - Proteus VSM Там можно моделировать абсолютно любые схемы (даже примитивы Лапласа есть!). Взять ее можно в прикрепленном архиве, вместе с файлами проекта. Правда версия не совсем крякнутая, поэтому не работает сохранение. Что с этим делать расскажу в отдельной статье.

Итак, запускаем ISIS (среда разработки принципиальных схем). В этом окне нажимам кнопочку “P”.

В строке “Keywords” вводим “attiny2313” и справа получаем:


Выбирать особо не из чего, поэтому щелкаем дважды по этой одинокой строке и видим слева в основном окне:


Это значит, что элемент добавлен.

Теперь введите в поле “Keywords” слова “LED-RED” и “RES” . Добавьте резистор и светодиод в проект и закройте окно выбора элементов.

Пробуем собрать схему (вывод RESET обязательно подключите к +5V, иначе ничего не заработает! и в жизни это тоже желательно!)

Вот небольшая подсказка :

А для редактирования свойств элементов достаточно щелкнуть по ним дважды.

Собрали? Надеюсь, не покалечили при этом себя, близких и окружающие предметы.

Простите за издевательство, просто если разберешься сам – уже не забудешь, так что, постигайте, программа очень мощная и она стоит того, чтобы ее освоить! :laughing:

Когда схема собрана, можно прошить наш виртуальный МК. Для этого щелкаем по нему дважды и видим окно.

Понравилась статья? Поделиться с друзьями: